您的足迹:首页 > Hbase >MapReduce生成HFile入库到HBase

MapReduce生成HFile入库到HBase

个人小站,正在持续整理中,欢迎访问:http://shitouer.cn

小站博文地址:MapReduce生成HFile入库到HBase

一、这种方式有很多的优点:

1. 如果我们一次性入库hbase巨量数据,处理速度慢不说,还特别占用Region资源, 一个比较高效便捷的方法就是使用 “Bulk Loading”方法,即HBase提供的HFileOutputFormat类。

2. 它是利用hbase的数据信息按照特定格式存储在hdfs内这一原理,直接生成这种hdfs内存储的数据格式文件,然后上传至合适位置,即完成巨量数据快速入库的办法。配合mapreduce完成,高效便捷,而且不占用region资源,增添负载。

二、这种方式也有很大的限制:

1. 仅适合初次数据导入,即表内数据为空,或者每次入库表内都无数据的情况。

2. HBase集群与Hadoop集群为同一集群,即HBase所基于的HDFS为生成HFile的MR的集群(额,咋表述~~~)

三、接下来一个demo,简单介绍整个过程。

1. 生成HFile部分

package zl.hbase.mr;
 
import java.io.IOException;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
import org.apache.hadoop.hbase.mapreduce.KeyValueSortReducer;
import org.apache.hadoop.hbase.mapreduce.SimpleTotalOrderPartitioner;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
 
import zl.hbase.util.ConnectionUtil;
 
public class HFileGenerator {
 
    public static class HFileMapper extends
            Mapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            String line = value.toString();
            String[] items = line.split(",", -1);
            ImmutableBytesWritable rowkey = new ImmutableBytesWritable(
                    items[0].getBytes());
 
            KeyValue kv = new KeyValue(Bytes.toBytes(items[0]),
                    Bytes.toBytes(items[1]), Bytes.toBytes(items[2]),
                    System.currentTimeMillis(), Bytes.toBytes(items[3]));
            if (null != kv) {
                context.write(rowkey, kv);
            }
        }
    }
 
    public static void main(String[] args) throws IOException,
            InterruptedException, ClassNotFoundException {
        Configuration conf = new Configuration();
        String[] dfsArgs = new GenericOptionsParser(conf, args)
                .getRemainingArgs();
 
        Job job = new Job(conf, "HFile bulk load test");
        job.setJarByClass(HFileGenerator.class);
 
        job.setMapperClass(HFileMapper.class);
        job.setReducerClass(KeyValueSortReducer.class);
 
        job.setMapOutputKeyClass(ImmutableBytesWritable.class);
        job.setMapOutputValueClass(Text.class);
 
        job.setPartitionerClass(SimpleTotalOrderPartitioner.class);
 
        FileInputFormat.addInputPath(job, new Path(dfsArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(dfsArgs[1]));
 
        HFileOutputFormat.configureIncrementalLoad(job,
                ConnectionUtil.getTable());
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

生成HFile程序说明:

①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。

②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。

③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。

④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。SimpleTotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。

⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。

2. HFile入库到HBase

package zl.hbase.bulkload;
 
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
import org.apache.hadoop.util.GenericOptionsParser;
 
import zl.hbase.util.ConnectionUtil;
 
public class HFileLoader {
 
    public static void main(String[] args) throws Exception {
        String[] dfsArgs = new GenericOptionsParser(
                ConnectionUtil.getConfiguration(), args).getRemainingArgs();
        LoadIncrementalHFiles loader = new LoadIncrementalHFiles(
                ConnectionUtil.getConfiguration());
        loader.doBulkLoad(new Path(dfsArgs[0]), ConnectionUtil.getTable());
    }
 
}

通过HBase中 LoadIncrementalHFiles的doBulkLoad方法,对生成的HFile文件入库。

本博客所有文章如无特别注明均为原创。作者:数据为王复制或转载请以超链接形式注明转自 数据为王
原文地址《MapReduce生成HFile入库到HBase

相关推荐


  • blogger

发表评论

路人甲 表情
看不清楚?点图切换 Ctrl+Enter快速提交

网友评论(0)